%Fig7_9.m %Essential Electron Transport for Device Physics %Zero temperature Lindhard dielectric funtion in GaAs with optical phonons; %showing truncated parabola of integration %for injected electron energy Emax(meV) %and log10 loss-function spectral intensity clear; clf; FS = 12; %label fontsize 18 FSN = 12; %number fontsize 16 LW = 1; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times'); set(0,'DefaultAxesFontSize', FSN); % Change default text fonts. set(0,'DefaultTextFontname', 'Times'); set(0,'DefaultTextFontSize', FSN); %hbar=['\fontname{MT Extra}h\fontname{Times}']; colormap(jet); Emax=200; %energy of injected electron (meV) 300 n1=1.e18; %electron carrier concentration (cm^-3) n=n1*1.e6; %convert to m^-3 m0=9.1095e-31; %bare electron mass ms=0.07; %effective electron mass in conduction band wLO=36.3; %longitudinal optic phonon energy (meV) wTO=33.3; %transverse optic phonon energy (meV) einf=11.1; %high frequency dielectric constant hb=1.05459e-34; %Plank constant (J s) e=1.60219e-19; %electron chanrge (C) a0=0.529177e-10; %Bohr radius (m) kf=(3*(pi^2)*n)^(1/3); %Fermi wave vector (m^-1) kf1=kf*1e-2; %Fermi wave vector (cm^-1) Ef=((hb*kf)^2)/(2*m0*ms);%Fermi energy (eV) Ef=(Ef*1e3)/e; %Fermi energy (meV) wLO2=(wLO/Ef)^2; wTO2=(wTO/Ef)^2; zeta=ms/(pi*kf*a0); %Lindhard function prefactor gamma=.01; %Energy broadening (GAMMA / Ef) 0.01, 0.025,0.055 npoints=600; dE=Emax/npoints; y1min=0.001; y1max=Emax/Ef; x1=[0.001:.01:6.01]; %{0.01 6.01}, {0.1 60.01} y1=[0.001:.01:6.01]+i*gamma; %y1=[0.001:dE:y1max]+i*gamma; zeta=ms/(pi*kf*a0); for i1=1:length(x1) x=x1(i1)+0.001; for j=1:length(y1); y=y1(j)+0.001; zeta1=zeta/x^3; a4=2*x; a1=(1-1/4*(x-y/x).^2).*log((y-x*(x+2))./(y-x*(x-2))); a2=(1-1/4*(x+y/x).^2).*log((-y-x*(x+2))./(-y-x*(x-2))); a3=zeta1*(a4+a1+a2); %epsi=((y./(y-i*gamma)).*a3)+einf; %Electrons only and fix a3 %epsi=a3+einf; %Electrons only %epsi=a3+(einf*((y.^2-wLO2)./(y.^2-wTO2))); %Electrons+LO epsi=((y./(y-i*gamma)).*a3)+(einf*((y.^2-wLO2)./(y.^2-wTO2))); %Electrons+LO and fix a3 f1(j,i1)=-imag(1./epsi); %loss function f1(j,i1)=f1(j,i1)/x1(i1); %loss function weighted by 1/q end end %Plot truncated parabola of integration Etruncate=Emax-Ef; %truncation energy (meV) Emax1=Emax/Ef; Etruncate1=Etruncate/Ef; for i=1:601 xplot(i)=x1(i); yplot(i)=Emax1-((x1(i)-sqrt(Emax1))^2); %parabola of integration if yplot(i) > Etruncate1 %tuncate parabola yplot(i)=Etruncate1; %truncate parabola end end figure(1); hold on; imagesc(x1,real(y1)*Ef,log10(abs(f1)));%plot color scale image colorbar; xlabel('Wavevector, \itq\rm (\itk\rm_F)'); yttl=['Energy loss, $\hbar\omega$ (meV)']; ylabel(yttl,'Interpreter','latex'); axis([0 4 0 4*Ef]);%([0 6 0 6*Ef]) ttl2=['\rmFig7.9, GaAs, log_{10}, \itT\rm=0 K, \itm\rm^*_e=',num2str(ms),... '\times\itm\rm_0, \itn\rm_0=',num2str(n1/1e18),'\times10^{18} cm^{-3}, \itE\rm_F=',... num2str(Ef,'%5.1f'),' meV, \gamma=',num2str(gamma),... ', \itE\rm_{max}=',num2str(Emax1*Ef),' meV']; title(ttl2); plot(xplot,Ef*yplot,'r','LineWidth',2); %plot truncated parabola hold off