%Fig7_12ab.m %Essential Electron Transport for Device Physics %Plot RPA dielectric function at finite temperature including phonons clear all; clf; FS = 12; %label fontsize 18 FSN = 12; %number fontsize 16 LW = 1; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times'); set(0,'DefaultAxesFontSize', FSN); % Change default text fonts. set(0,'DefaultTextFontname', 'Times'); set(0,'DefaultTextFontSize', FSN); %hbar1=['\fontname{MT Extra}h\fontname{Times}']; colormap(jet); hbar = 1.05457159e-34; % Planck's constant (Js) nDoping1 = 1e18; % n-type doping concentration (cm^-3) 1e18 nDoping = nDoping1*1e6; % Doping concentration to m^-3 m2 = 0.07; % Effective electron mass coefficient m0 = 9.109382e-31; % Bare electron mass (kg) wLO=36.3; % longitudinal optic phonon energy (meV) wTO=33.3; % transverse optic phonon energy (meV) a0=0.529177e-10; % Bohr radius (m) einf=11.1; % high frequency dielectric constant m = m2*m0; % Effective electron mass (kg) echarge = 1.6021764e-19; % Electron charge (C) EFermi = hbar^2*(3*pi^2*nDoping)^(2/3)/(2*m); % Unit :J EFermi1 = (EFermi*1e3)/echarge; % Fermi energy in meV wLO2=(wLO/EFermi1)^2; wTO2=(wTO/EFermi1)^2; gamma=0.01; %Energy broadening (GAMMA / Ef) 0.03 0.01 eye=complex(0,1); %square root of minus one kFermi = (3*pi^2*nDoping)^(1/3); % Fermi wave vector (m^-1) T = 100; % Absolute temperature 300, 10, 4.2 (K) kB = 1.3806505e-23/echarge; % Boltzmann constant (eV/K) beta = 1/(kB*T); % Inverse thermal energy (eV^-1) Energymax=100; % Electron energy maximum (meV) Energystep=Energymax/60; % Electron energy step (meV) ymax=Energymax/EFermi1; % max value of energy loss, omega/Ef 18 %max value of scattered wave vector q/kf set at ymax value xmax=(sqrt(ymax))*(1+sqrt(2));%approximately 15, 6 for n=1e17, 1e18 mu = CalculateChemicalPotential(T, nDoping, m, EFermi1/1e3); x1=[gamma/2:gamma/2:xmax];%[0.01:.005:xmax] scattered wave vector step at gamma/2 y=[-ymax:gamma/8:ymax]+eye*gamma;% energy loss step is gamma f1 = zeros(length(y),length(x1)); %************************************************************************* % Calculate the response and Im_Xe %************************************************************************* factor = 4*pi*8.85e-12; E_q_factor=hbar^2/(2*m*echarge); Im_Xe_factor=2*echarge^2*m^2/(hbar^4*beta/echarge); Energy = y*EFermi1; %energy loss in meV x = 0.2; %scattered wave vector q/k_F q = x*kFermi; %wave vector in m^-1 E_q = E_q_factor*q^2; Energy1 = (real(Energy)/1e3-E_q).^2/(4*E_q); Energy2 = (real(Energy)/1e3+E_q).^2/(4*E_q); Im_Xe = (Im_Xe_factor/(q^3))*log((1+exp(-beta*(Energy1-mu)))./... (1+exp(-beta*(Energy2-mu)))); Re_Xe = -imag(hilbert(Im_Xe)); %use MATLAB Hilbert transform function %may require Signal Processing Toolbox epsi = ((y/(y-eye*gamma)*(Re_Xe+(eye*Im_Xe)))/factor)... +(einf*((y.^2-wLO2)./(y.^2-wTO2))); figure(1) plot(real(y)*EFermi1,real(epsi),'b'); hold on; plot(real(y)*EFermi1,imag(epsi),'r'); %axis([-Energymax Energymax -max(1.1*real(epsi)) max(1.1*real(epsi))]); axis([-Energymax Energymax -150 150]); xttl=['Energy loss, $\hbar\omega$ (meV)']; xlabel(xttl,'Interpreter','latex'); ylabel('Real (blue) and Imaginary (red) dielectric function'); ttl1=['\rmFig7.12, GaAs, \itn\rm_0=',num2str(nDoping1,'%4.1e'),' cm^{-3}, \itk\rm_F=',... num2str(kFermi*1e-3,'%4.1e'),' m^{-1}, \itq\rm/\itk\rm_F=',num2str(x,'%5.2f'),... ', \itm\rm^*_e=',num2str(m2,'%5.2f'),'\times\itm\rm_0, \gamma=',... num2str(gamma,'%5.2f'),'\times\itE\rm_F, \itT\rm=',num2str(T,'%5.0f'),' K']; title(ttl1); hold off; figure(2) plot(real(y)*EFermi1,imag(epsi./(abs(epsi).^2)),'b'); hold on; plot(real(y)*EFermi1,100*imag(epsi./(abs(epsi).^2)),'r'); %axis([-Energymax Energymax -max(1.1*real(epsi)) max(1.1*real(epsi))]); axis([-Energymax Energymax -25 25]); xttl=['Energy loss, $\hbar\omega$ (meV)']; xlabel(xttl,'Interpreter','latex'); ylabel('Dielectric loss function, -Im(1/\epsilon)'); title(ttl1); hold off;