%Fig5_14a.m %Essential Electron Transport for Device Physics %elastic ionized impurity scattering rate using TF screeing %m=electron mass, n=number of charge impurities function TFelasticScattering clear; clf; m0=9.109382e-31; %bare electron mass (kg) echarge=1.6021764e-19; %electron charge (C) hbar=1.05457159e-34; %Planck's constant (J s) epsilon0=8.8541878e-12; %permittivity of free-space (F m-1) ezero=13.2; %low-frequency relative dielectric constant m1=0.070; %effective electron mass emax=300.0d-3; %maximum particle energy (eV) n=1.0d17; %carrier density, n (cm-3) npoints = 200; %number of points in energy plot for k=1:1 n=n*10; %plot two curves n=10^17 cm-3 and n=10^18 cm-3 kF1=(3*(pi^2)*n)^(1/3); %Fermi wave vector (cm-1) kF1=kF1*1.e2; %convert to units of m-1 kF2=kF1^2; kF3=kF1^3; qTF2=kF1*m0*m1*(echarge^2)/(epsilon0*ezero*(pi^2)*(hbar^2)); % Thomas-Fermi screening number squared eF=((hbar*kF1)^2)/(2.0*m0*m1*echarge); % Fermi energy in eV const=(pi*n*1.0e6*(echarge^4)*m0*m1); const=const/(((4.*pi*epsilon0)^2)*(ezero^2)*(hbar^3)); emin=eF; %initial particle energy demax=(emax-emin)/200.0; %increment in particle energy (eV) dth=pi/180.0; %increment in scattering angle theta ei=emin; for i=1:npoints % the main loop ei=ei+demax; ak=(sqrt(2.*m0*m1*ei*echarge))/hbar; ak3=ak^3; aint1=0.0; theta=0.0; for j=1:180 theta=theta+dth; aint1=aint1+(dth*gchi1(theta,ak,qTF2)); %call function aint1 end y1(i)=const*aint1/ak3; x1(i)=ei*1.d3; end %plot figure ttl=['\rmFig5.14a, \itn\rm_{0}=',num2str(n,'%4.1e'),... ' cm^{-3}, \itm\rm^*_e=',num2str(m1,'%5.2f'),... '\times\itm\rm_0, \epsilon_{r0}=',num2str(ezero,'%5.1f')]; figure(1); hold on; plot(x1,y1*10^-12,'r');%inverse ps grid on axis([0,emax*1.d3,0,16]); end; xlabel('Energy, \itE\rm (meV)'); ylabel('Elastic scattering rate, 1/\tau_{el} (ps^{-1})'); title(ttl); hold off; function gchi1 = gchi1(theta,k,qTF2) x=2.0*k*sin(theta/2.0); x2=x^2; g=(tan(theta/2.0))*((sin(theta/2.))^2)*((1.0+(qTF2/x2))^2); gchi1=1.0/g; return